• 手机扫码访问

    2022年贵州省毕节市中考数学试卷(含答案)

    2022-07-011 9.99元 12页 434.44 KB
    立即下载 侵权申诉 举报
    预览已结束,查看全部内容需要下载哦~
    下载需要9.99
    点击下载完整资料立即下载
    版权声明
    温馨提示:
    1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
    2. 本文档由用户上传,版权归属用户,qqbaobao负责整理代发布。如果您对本文档版权有争议请及时联系客服。
    3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
    4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
    网站微信客服:wwwQQBAOBAO
    展开
    2022年贵州省毕节市中考数学试卷一、选择题(本题15小题,每小题3分,共45分)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;277000000用科学记数法表示为()A.277×106B.2.77×107C.2.8×108D.2.77×1084.(3分)计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x65.(3分)如图,m∥n,其中∠1=40°,则∠2的度数为()A.130°B.140°C.150°D.160°6.(3分)计算+|﹣2|×cos45°的结果,正确的是()A.B.3C.2+D.2+27.(3分)如果一个三角形的两边长分别为3,7,则第三边的长可以是()A.3B.4C.7D.108.(3分)在△ABC中,用尺规作图,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N.作直线MN交AC于点D,交BC于点E,连接AE.则下列结论不一定正确的是()A.AB=AEB.AD=CDC.AE=CED.∠ADE=∠CDE9.(3分)小明解分式方程=﹣1的过程如下.解:去分母,得3=2x﹣(3x+3).①去括号,得3=2x﹣3x+3.②移项、合并同类项,得﹣x=6.③化系数为1,得x=﹣6.④以上步骤中,开始出错的一步是()A.①B.②C.③D.④,则AB的长度为10.(3分)如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:(),A.10mB.10mC.5mD.5m11.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.12.(3分)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是()A.375πcm2B.450πcm2C.600πcm2D.750πcm213.(3分)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h14.(3分)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.其中正确的有()A.1个B.2个C.3个D.4个15.(3分)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()A.3B.C.D.二、填空题(共5小题,每小题5分,满分25分)16.(5分)分解因式:2m2﹣8=.17.(5分)甲乙两人参加社会实践活动,随机选择“做环保志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做环保志愿者”的概率是.,18.(5分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为.23.(10分)某校在开展“网络安全知识教育周”期间,在八年级中随机抽取了20名学生分成甲、乙两组,每组各10人,进行“网络安全”现场知识竞赛.把甲、乙两组的成绩进行整理分析(满分100分,竞赛得分用x表示:90≤x≤100为网络安全意识非常强,80≤x<90为网络安全意识强,x<80为网络安全意识一般).19.(5分)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是.20.(5分)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(﹣1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(﹣4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,﹣4),…;按此做法进行下去,则点A10的坐标为.分析数据:三、解答题(共7小题,满分80分)21.(8分)先化简,再求值:÷(1﹣),其中a=﹣2.22.(8分)解不等式组,并把解集在数轴上表示出来.收集整理的数据制成如下两幅统计图:平均数中位数众数甲组a8080乙组83bc根据以上信息回答下列问题:(1)填空:a=,b=,c=;(2)已知该校八年级有500人,估计八年级网络安全意识非常强的人数一共是多少?,(3)现在准备从甲乙两组满分人数中抽取两名同学参加校际比赛,求抽取的两名同学恰好一人来自甲组,另一人来自乙组的概率.求证:四边形ABCD是平行四边形;24.(12分)如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连如图2,E,F,G分别是BO,CO,AD的中点,连接EF,GE,GF,若BD=2AB,BC=15,AC=16,接DE并延长交BC的延长线于点F.求△EFG的周长.求证:BF=BD;若CF=1,tan∠EDB=2,求⊙O的直径.25.(12分)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是一、选择题(本题15小题,每小题3分,共45分)多少?1.【解答】解:2的相反数为:﹣2.(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?26.(14分)如图1,在四边形ABCD中,AC和BD相交于点O,AO=CO,∠BCA=∠CAD.27.(16分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.求抛物线y=﹣x2+bx+c的表达式;把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.2022年贵州省毕节市中考数学试卷参考答案与试题解析故选:B.2.【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;,B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.3.【解答】解:277000000=2.77×108.故选:D.4.【解答】解:(2x2)3=8x6.故选:D.5.【解答】解:如图,∵m∥n,∠1=40°,∴∠3=∠1=40°,∵∠2+∠3=180°,∴∠2=180°﹣∠3=140°,故选:B.6.【解答】解:原式=2+2×=3.故选:B.7.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为7,故选:C.8.【解答】解:由作图可知,MN垂直平分线段AC,∴AD=DC,EA=EC,∠ADE=∠CDE=90°,故选项B,C,D正确,故选:A.9.【解答】解:去分母得:3=2x﹣(3x+3)①,去括号得:3=2x﹣3x﹣3②,∴开始出错的一步是②,故选:B.10.【解答】解:∵坡面AB的坡度为==1:,∴AC=5m,∴AB==10m.故选:A.11.【解答】解:∵马四匹、牛六头,共价四十八两,∴4x+6y=48;∵马三匹、牛五头,共价三十八两,∴3x+5y=38.∴可列方程组为.故选:C.12.【解答】解:∵AB的长是45cm,扇面BD的长为30cm,,∴AD=AB﹣BD=15cm,∵∠BAC=120°,∴扇面的面积S=S扇形BAC﹣S扇形DAE=﹣=600π(cm2),故选:C.13.【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;故选:D.14.【解答】解:∵图象开口向下,∴a<0,∵对称轴为直线x=﹣=1,∴b=﹣2a>0,∵图象与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴①说法正确,∵﹣=1,∴2a=﹣b,∴2a+b=0,∴②说法错误,由图象可知抛物线与x轴的另一个交点为(3,0),∴当x=3时,y=0,∴9a+3b+c=0,∴③说法错误,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,∴④说法正确;当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴⑤说法正确,∴正确的为①④⑤,故选:C.15.【解答】解:连接BF,交AE于O点,,∵将△ABE沿AE折叠得到△AFE,∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得,AE==,∴BO==,∴BF=2BO=,在Rt△BCF中,由勾股定理得,CF===,故选:D.二、填空题(共5小题,每小题5分,满分25分)16.【解答】解:2m2﹣8,=2(m2﹣4),=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).17.【解答】解:甲乙两人随机选择“做环保志愿者”和“做交通引导员”两项中的一项,所有可能出现的结果如下:共有4种可能出现的结果,其中两人同时选择“做环保志愿者”的有1种,所以两人同时选择“做环保志愿者”的概率为,故答案为:.18.【解答】解:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=2,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.19.【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.20.【解答】解:由图象可知,A5(5,1),将点A5向左平移6个单位、再向上平移6个单位,可得A6(﹣1,7),将点A6向左平移7个单位,再向下平移7个单位,可得A7(﹣8,0),将点A7向右平移8个单位,再向下平移8个单位,可得A8(0,﹣8),将点A8向右平移9个单位,再向上平移9个单位,可得A9(9,1),将点A9向左平移平移10个单位,再向上平移10个单位,可得A10(﹣1,11),,故答案为:(﹣1,11).三、解答题(共7小题,满分80分)21.【解答】解:÷(1﹣)=÷=•=,当a=﹣2时,原式===.22.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<2,∴原不等式组的解集为:﹣1≤x<2,该不等式组的解集在数轴上表示为:23.【解答】解:(1)甲组的平均数a==83(分),将乙组的10名同学的成绩从小到大排列,处在中间位置的两个数的平均数为=85(分),即中位数b=85,乙组10名同学成绩出现次数最多的是70分,共出现4次,因此众数是70分,即c=70,故答案为:a=83,b=85,c=70;(2)500×=200(人),答:该校八年级500名学生中网络安全意识非常强的大约有200人.;(3)甲组1名,乙组2名满分的同学中任意选取2名,所有可能出现的结果如下:共有6种可能出现的结果,其中两名同学恰好一人来自甲组,另一人来自乙组的有4种,所以两名同学恰好一人来自甲组,另一人来自乙组的概率为=.24.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.25.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.26.【解答】(1)证明:∵∠BCA=∠CAD,,∴AD∥BC,在△AOD与△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形;(2)解:连接DF,∵四边形ABCD是平行四边形,∴AD=BC=15,AB=CD,AD∥BC,BD=2OD,OA=OC=AC=8,∵BD=2AB,∴AB=OD,∴DO=DC,∵点F是OC的中点,∴OF=OC=4,DF⊥OC,∴AF=OA+OF=12,在Rt△AFD中,DF===9,∴点G是AD的中点,∠AFD=90°,∴DG=FG=AD=7.5,∵点E,点F分别是OB,OC的中点,∴EF是△OBC的中位线,∴EF=BC=7.5,EF∥BC,∴EF=DG,EF∥AD,∴四边形GEFD是平行四边形,∴GE=DF=9,∴△EFG的周长=GE+GF+EF=9+7.5+7.5=24,∴△EFG的周长为24.27.【解答】解:(1)∵抛物线y=﹣x2+bx+c的顶点为D(2,1),∴抛物线的表达式为:y=﹣(x﹣2)2+1=﹣x2+4x﹣3.(2)由(1)知,抛物线的表达式为:y=﹣x2+4x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x=1或x=3,∴A(1,0),B(3,0).∴直线BC的解析式为:y=x﹣3.设平移后的抛物线的解析式为:y=﹣(x﹣2)2+1﹣h,,令﹣(x﹣2)2+1﹣h=x﹣3,整理得x2﹣3x+h=0,∵该抛物线与直线BC始终有交点,∴Δ=9﹣4h≥0,∴h≤.∴h的最大值为.(3)存在,理由如下:由题意可知,抛物线的对称轴为:直线x=2,∴E(2,﹣1),∴DE=2,设点M(m,﹣m2+4m﹣3),若以点D,E,M,N为顶点的四边形是平行四边形,则分一下两种情况:①当DE为边时,DE∥MN,则N(m,m﹣3),∴MN=|﹣m2+4m﹣3﹣(m﹣3)|=|﹣m2+3m|,∴|﹣m2+3m|=2,解得m=1或m=2(舍)或m=或m=.∴N(1,﹣2)或(,)或(,).②当DE为对角线时,设点N的坐标为t,则N(t,t﹣3),∴,解得m或(舍),∴N(3,0).综上,点N的坐标为N(1,﹣2)或(,)或(,)或(3,0).
    2022年贵州省毕节市中考数学试卷(含答案)
    呻吟色站